Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Complex Magnetic Phase Diagram of CeRh₂Ge₂

Hideki Abe and Hideaki Kitazawa National Research Institute for Metals 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0003, Japan

It has been reported that the intermetallic compound CeRh₂Ge₂ with the tetragonal ThCr₂Si₂ structure exhibits an incommensurate antiferromagnetic ordering below the Néel temperature of 15 K*. Recent researches have revealed that another transition is observed in the specific heat at 8.3 K. Magnetic isotherm measurements at 5 K using polycrystalline specimens have shown that double-step metamagnetic transition occurs at 0.5 T and 3 T^{\dagger} . In order to obtain precise information about the magnetic properties of CeRh₂Ge₂, we have performed a series of magnetization measurements on the home-made single crystalline specimens up to 5 T and down to 2 K. Consequently, it was found that the magnetic phase diagram along the c-axis is quite complicated. Magnetic susceptibility measured at 0.1 T indicates two transitions occur at 8.25 and 14.4 K. The magnetic isotherm at 2 K shows 5-step metamagnetic transitions at 0.35 (Hc₁), 2.33 (Hc₂), 2.47 (Hc₃), 3.19 (Hc₄) and 3.45 T (Hc₅). Magnetization at each plateau is 0 (H \langle Hc₁), 0.12 (Hc₁ \langle H \langle Hc₂), 0.31 (Hc₂ \langle H \langle Hc₃ \rangle , 0.50 (Hc₃ \langle H \langle Hc₄ \rangle , 0.88 (Hc₄ \langle H \langle Hc₅ \rangle) and reaches to the saturation magnetization 1.81 μ_B/f .u. above Hc₅. The H-T plane is divided into 8 sections by the phase boundaries. Such complexity of the phase diagram suggests a frustration in the exchange interactions between the highly anisotropic magnetic moments.

^{*}G. Venturini et.al., Solid State Commun. 67(1988)193.

[†]J.D.Thompson et.al., Physica B 199 and 200(1994)589.